Compositional properties of telomeric regions from human chromosomes

Albertina De Sario, Brahim Aïssani and Giorgio Bernardi

Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005 Paris, France

Received 23 October 1991

We have investigated the GC levels of third codon position of genes localized in G- (Giemsa), R- (reverse) and T- (telomeric) bands of human metaphase chromosomes, as well as the hybridization of telomeric probes on fractionated human DNA. The first set of results shows much higher GC levels for genes localized in T-bands than in G- or R-bands (the latter being higher than the former). The second set of data shows that telomeric probes corresponding to T-bands hybridize on the GC-richest family (H3) of isochores, whereas telomeric probes corresponding to R-bands hybridize on GC-rich families H1 and H2; in agreement with these findings, the telomeric repeat common to all chromosomes hybridized on isochore families H1, H2 and H3.

Human genome; Chromosome; Telomere; T-band; Isochore

1. INTRODUCTION

Some years ago it was discovered [1] that the distribution of genes in the human genome is strikingly nonuniform and that the GC-richest isochores, those of the H3 family, exhibit the highest gene concentration; (isochores are the long, >300 kb, compositionally homogeneous DNA segments making up the human genome; they belong to a small number of families characterized by different GC levels). Indeed, the GC-richest isochores, which only represent about 3% of the human genome, are characterized by a gene concentration at least 8 times higher than GC-rich isochores, which represent about 31% of the genome, and at least 16 times higher than GC-poor isochores, which represent about 62% of the genome [2]. Very recent investigations have also shown that the GC-richest isochores (i) are the richest ones in CpG doublets and in CpG islands [3,4]; (ii) are preferred integration regions for most retroviruses, and are very actively transcribed [5] (S. Zoubak, A. Rynditch, G. Bernardi, paper in preparation); (iii) are very rich in Alu sequences [6,7]; (iv) are the most recombingenic ones [8]; and (v) largely correspond to an open chromatin structure characterized by DNase sensitivity [8], a wider nucleosome spacing [9] (Aissani and Bernardi, unpublished observation), scarcity of histone H1 and acetylation of histones H3 and H4 [9]. Compositional mapping [8,10] of the long arm of human chromosome 21 has shown that the GC-richest isochores correspond to the telomere [10], which is a thermal denaturation resistant band, a T-band [11], and a chromomycin A3-positive, DAPI-negative band [12]. This finding [10] has led to the proposal [8,10] that the

Correspondence address: A. De Sario, Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005 Paris, France.

GC- and gene-richest isochore family, H3, corresponds to T-bands [11] and to chromomycin A3-positive bands [12], which are mainly located at about 20 telomeres. This proposal has been tested here by using two different approaches, namely by investigating the GC levels of third codon positions of genes localized in G-, R- and T-bands, and by hybridizing telomeric probes on fractionated human DNA.

2. MATERIALS AND METHODS

2.1. Sequence analysis and chromosomal location of genes

Human genes localized in individual chromosome bands, either at low resolution (400 bands per haploid karyotype) or at high resolution (850 bands), were extracted from HGM10 [13] and HGM11 (Human Gene Mapping Conference, London, August 1991). Gene sequences were obtained from GenBank or EMBL Library. Genes were divided in three classes on the basis of their localization in G-, R- or T-bands, respectively.

2.2. DNA preparation

DNA was extracted from a fresh human placenta as described [7]. The average size of DNA fragments was about 50–100 kb, as determined by gel electrophoresis.

2.3. Preparative centrifugation

DNA was centrifuged in a Cs₂SO₄/BAMD gradient at a ligand/ nucleotide molar ratio Rf=0.14, as described [7]; BAMD is 3,6-bis-(acetato-mercuri-methyl) dioxane. Eleven fractions were collected, dialyzed against 10 mM Tris, 10 mM EDTA, pH 7.5, at room temperature overnight, and against 10 mM Tris, 1 mM EDTA, pH 7.5, at 4°C for 4 days. The fractions were characterized by analytical density gradient ultracentrifugation in CsCl as described [14].

2.4. Probes

The human probes used had been previously localized on one or more telomeric bands either by in situ hybridization or by using somatic hybrids: (i) pHuR93 contains 240 bp of the telomeric tandem repeat [15], and was purchased from ATCC, the American Type Culture Collection; (ii) G2-1H is a single copy sequence localized in telomeric band 4q35 [16]; (iii) Scos146-3 is a cosmid clone which exhibits specific hybridization to 7q36 [17]; (iv) pTH24 is a 390 bp GC-rich (80%) sequence that contains 6 copies of a 29 bp direct repeat;

it is proximal to the telomeric terminal repeat and hybridizes on chromosomes 7, 16, 17 and 21, but not on chromosome 3, as determined by using hybrid cell lines [18]; (v) pTH14\(\Delta\) contains a 410 bp sequence of 50\(\text{\infty}\) of GC; apparently it is a rearranged clone derived from the same human sequence as pTH2\(\Delta\) [18].

2.5. Restriction enzyme digestion and hybridization

l µg of each DNA fraction digested either with Hpull or with EcoRI was loaded on a 0.8% agarose gel. Alkaline DNA transfer was performed onto Hybond-N° membrane (Amersham) after partial depurination. Filter hybridization was carried out using probes labeled by the random primer method (Amersham); cosmid clone Scos146-3 was pre-annealed to sonicated DNA from human placenta [19] in order to suppress the effect of highly repetitive sequences. After each hybridization, filters were dehybridized in 0.5% SDS.

3. RESULTS

3.1. Compositional distribution of human genes localized on chromosomal bands

The distribution of GC levels of third codon positions (Fig. 1 and Table I) was done on coding sequences localized on chromosome bands, as determined at high resolution (850 bands per haploid karyotype) or low resolution (400 bands). The former approach could only be applied to 64 coding sequences. The mean GC values

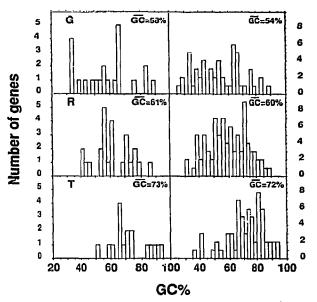


Fig. 1. Histograms of GC levels of third codon positions of human genes localized in G-, R- and T-bands at high resolution (left panels) or low resolution (right panels). Bars correspond to 2.5% GC intervals. Genes from the left panels were included in the right panels using their assignment at high resolution.

Table List of human genes localized in G-, R- and T-bands used in the present work

	G panos			п	<u>Danos</u>						1 Danos					
2 ALCHY		Localization	GCIIIX					Nº Symbol	Localization			Localization	GCIII		Localization	GCIIN,
2 ALCHY 9021.1 40.6 2 AWXL Y211 64.0 63.1 14.0 63.2 64.0 63.2 64.0 63.2 64.0				1	ADA"	20q13.11				53.7			69.2		11p15	41.3
3 ALDRIZ 12g-4.2 63.7 3 APP 12g-1.2 55.5 54 LOAT 16g22.1 78.0 3 ACR 22g-19-quer 61.1 16g26 40.5 6 APC 1921 20.2 66.6 6 ATP 14.1 1913 55.5 56 LOAT 66.2 6 ALDRIZ 69.0 35 Pm 14.2 10.2 6 APC 1921 20.2 66.6 6 ATP 14.1 1913 55.5 56 LOAT 66.2 6 ALDRIZ 69.0 35 Pm 14.2 10.2 7 ART 18g-12 20.2 20.2 6 ALDRIZ 69.0 35 Pm 14.2 10.2 8 CALCAY 1918.4 60.0 8 COR 1921 20.3 20.5 20.5 20.5 8 CORA 2912 20.9 6 CAP 1922 31.1 60.0 8 CORA 1913 45.6 60.0 8 APR 1913.2 30.5 35 Pm 1913 9 CORA 2912 20.9 6 CAP 1922 31.1 60.0 8 APR 1912.2 60.0 8 APR 1913 10 COCC 10g-1.1 34.9 10 CA2 60.2 51.2 65 CORA 1913 31.2 60.0 8 APR 1913 11 COCC 10g-1.1 34.9 10 CA2 60.2 51.2 65 CORA 1913 31.2 60.0 8 APR 1913	2 ALD:41	9021.1	40.6	2	AMGL	You	64.0	53L1CAM*	14.28	41,6	2 ABL	9034	54.8	53 NACA	22q13-qter	73.3
A ANY 1921 25.2 A ARSI 6202 44.5 55.5 56.050 41.7 57.2 57.7 57	3 ALDH2	12024.2	63.7	1 3	APP.	21021.2	55.5			76.3	3 ACR	22013-0107	61.1	54 OAT	10c26	40.9
S APOCT -2 19q13-2 68.8 8 ATP -14 1913 55.5 66,005A 4921 72.9 7 APT 7 4914	4 AVXY		35.3	4	ARGI					31.9			73.2	55 PFKL		71.4
	5 APOC1+2	* 19a13.2	66.8	5	ATPIA1		58.5	5 6 MGSA		69.2	5 ALAD	9034			14032.1	67.2
7 AP	6 APOE"		88.4				83.5				6 ALPP		79.1	57 PRM1+2"		
B CACCA* 1:p15.4 60.0 B CAP 1921 3.5 60 MRS 1911 4.5 6.0 MRS 1912	7 AR*		63.4	J 7	BLYM			58 NEFL		75.9	7 APRT		81.2	58 PTH		35.7
S CDEA* 2p12 2p3 9 CAB* 1q32 31, 60 NRAS 1p13 45, 60 RRP 15q24 10q21. 10q21. 11q23 31, 10q21. 1	B CALCA*		0.33							50.B	BIAPS			59 RAP2		
1 CCR	S CD8A*		83.9				39.1	60 NRAS		45.8	6 ARPI		81.2	50 S100B		63.4
1 CCR	1 0 0002*	10c21.1	34.9	10	CA2	8q22	54.0	61 PDHA1	Xp22.1	52.4	10 ARSA	22q13.31-qtor	75.7	61 TF	3921	57.5
13 CLG4* 18021 201-122 201	1 1 COR		54.9	11	CD33+E+G	11923	50.2	62 PFC*		71,9		9q34-qtor	7~.3	62 TGFB1	19913.1	83.2
14 CCILAN 1 12614.3 37.7 14 CR1	12 CETP*	16q21	75.3	12	CD9	12013	71.4	63 PGK1	Xq13	56.0	12 BCEIT	21q22.3	68.2		11015.5	86.2
15 COL11A1 1921 27.8 15 CPH 6913 51.8 6 RDWC 2923 61.2 15 CRS 19413:3 62.5 17 CV93" X921.1 50.7 17 CTLAX 2933 65.0 66 RBP9 10q11.2 70.8 14q22.3 75.3 18 CMC 6524 49.4 48 KCPPC 10q24 51.8 69 RDP Xq28 75.9 14q12.2 64.5 19 CAL 19 DAF 1q32 39.3 70 RD 1q32 65.0 66 RBP9 10q11.2 70.6 10q24 51.8 69 RDP Xq28 75.9 14q12.2 64.5 19 CAL 19 DAF 1q32 39.3 70 RD 1q32 65.0 66 RBP9 10q11.2 70.6 10q11.2 70.6 10q11.2 70.6 10 CAL 19 DAF 1q32 39.3 70 RD 1q32 65.0 66 60.5 6	13 CLG4*	16021	43.3	13	CDSB	1013	36.2	64 PKLR	1g21	72.4	13 BCR	22911	83.0	64 TNFA-B	€p21.3	75.0
15 COL11A1 1p21 27.8 15 CPH 8q13 51.6 66 FONC 2p23 61.2 15 CCG 1qq13:2 27.7 17 CVG3* Xp21:1 50.7 17 CTLA4 2q33 65.0 68 RBP3 10q11.2 76.2 17 CVG3* Xp21:1 50.7 17 CTLA4 2q33 65.0 68 RBP3 10q11.2 76.2 17 CVG3* Xp21:1 51.4 50.7 17 CTLA4 2q33 65.0 68 RBP3 10q11.2 76.2 17 CVG3* 14q22.3 75.3 18 CVPC 10q24 51.8 69 RDP* Xq20 79.9 19 CVPC Xq20	1 4 COL2A1"	12014.3	37.7	14	CRI	1q32	51.2	65 POLR2*	17p13.1	61.4	14 C44-B	6p21.3	42.2	(65 c)	22013.3	88.7
1	15 COL11A1		27.6	15	CPH		81.8	66 POVC					82.5			
17 CY891				16	CSF1						1 6 CHGA		72.7	1		
1				17	CTLA4		65.0			79.2	17 CK98		75.3	I		
10 EGR2* 10 10 10 10 10 10 10 1]		
2 o FGO 7q21 70.6 2 o 17q23 81.4 71 90.0 21q22.1 44.5 2 o CCL 111A2 6p21.3 52.2 2 o FGA ARCA 4028 41.5 2 o CEC 4025 55.8 73 SPN 1 6p11.2 61.3 2 o CCL 11A2 6p21.3 61.0 2 o GAST1 17q21.32 66.7 22 EGF 4025 55.8 73 SPN 1 1 1 1 1 1 1 1 1							39.3	7 O PEN		69.5			60.5	ļ		
2 2 GALBC 4026 41.5 21 DEF1 69.2 55.6 72 SPIN 16p11.2 61.3 21 COVIT 22q11.2 63.6 22 GALT 73 SPIN 16p11.2 61.3 21 COVIT 22q11.2 63.6 63.7 63.7 63.8 63.7 63.8				20	DCP								52.2	}		
22 SIUT5										61.3				į.		
23 GP3A* 17q21.32 68.7 22 CNO2 12q13 65.1 74 STSP Yq11 53.5 22 CV721 6p21.3 61.0 24 GST1 1p31 64.6 24 ETST* 11q23.3 60.4 75 TATT 153.4 24 CM24.4 194.5 25 GF5 7q21.1 30.6 25 F8C* Xq28 41.5 76 TCRA* 14q11.2 53.4 25 DIA1 22q13.31-q10* 79.6 27 GKC* 2p12 49.5 27 FABP1* 2p11 63.7 77 TGFA 2p13 71.4 28 ETST* 21q22.3 66.4 28 GKV* 2p12 49.5 28 CKE* 18q21.3 55.0 79 TP53* 17p13.1 62.4 29 ETST* 21q22.3 66.4 29 MT1L1 7q31 64.0 29 FGF5 4q21 79.5 60 79 TP53* 17p13.1 62.4 29 ETST* 21q22.3 66.4 20 MT1L1 7q31 64.0 24 FGF5 4q21 79.5 60 79 TP53* 17p13.1 62.4 29 ETST* 11q34 70.5 21 LNABS 12p12.2-p12.1 42.7 31 FLT1 13q12 46.0 82 LVC* 16q22.1 55.0 31 GGT1 2q111.1-q11.2 81.9 23 KRAST* 2p12.1 33.2 34 KET* 32 34 KET* 32 34 KET* 32 34 KET* 32 34 KET* 3	2 2 GLUTS	1001	78.1	22	EGF.		54.5	73 SPTA1		33.6	22 CTSD*	11015.5	87.5			
24 GST1 1931 64.0 24 ETS1* 11923.2 60.4 7.5 TAT* 16q22.1 53.4 24 QSAA-B 6q34 62.3 25 GST 7q21.1 30.0 25 FGC Xq28 41.5 76 TCRA 2913 71.4 25 DM1 22q13.31-q10* 79.8 26 GST 12q23 53.3 26 ETS1* 14q25 49.8 77 TGFA 2913 71.4 25 BM1 1928 65.5 27 GSC 2912 49.5 27 FABP1* 2911 62.7 78 TGFB3 14q24 71.8 27 FGG* 21q22.3 66.4 29 INTILI 7q31 64.0 29 FGF\$ 4q21 79.5 86 TF11 12p13 65.6 29 F7* 13q34 70.5 31 LDHB 12p12.2*p12.1 42.7 31 ELT1* 13q12 45.0 8 13F19 10p13 43.1 30 F10* 13q24 83.9 31 LDHB 12p12.2*p12.1 42.7 31 ELT1* 13q12 45.0 8 2UVC* 16q22.1 55.0 31 GGT1 22q11.1*q11.2 31.9 32 LPMB 12p12.2*p12.1 30.2 32 FGS* 14q24.3 71.4 84.0 Xp11.23 65.6 32 GGR 18q13.1 91.5 34 MST 7q31 40.6 34 GGPD* Xq20 66.2 85.0 85.0 44 MST Xp11.23 45.0 32 GMR 18q13.1 91.5 35 MMC2 Xp22.2*Yp11.3 52.1 35 GGCP* Xq20 66.2 85.0 39 GGP* Xq20 76.4 40 MSTR* 11913.9 90.7 39 GUTT 17913 77.6 30 GGP* Xq20 76.4 40 MSTR* 11913.9 90.5 39 GGP* Xq20 76.4 40 MSTR* 11913.9 90.5 40 GGP* Xq20 76.4 40 MSTR* 11913.9 90.5 40 GGP* Xq20 66.2 40 MSTR* 11913.9 90.5 40 GGP* Xq20 66.2 40	3 3 GP3A*		68.7	23	EVO2		65.1	74 STSP		53.5	23 CYP21	6p21.3	81.0	l		
2 5 GGP 12 23 53 24 Fil				24	ETS1"					58.4				1		
2 6 GFT 12 22 33.9 2 6 FTT 4 4035 48.8 77 TGFA 2 pi 3 71.4 2 8 BOT 1 pi 8 65.5 2 8 GKV 2 pi 2 64.1 2 8 FCE 1 8 q 21.3 36.0 7 9 TGFB 3 1 4 q 24 71.6 2 7 FRGY 2 1 q 22.3 65.6 2 8 GKV 2 pi 2 64.1 2 8 FCE 1 8 q 21.3 36.0 7 9 TF53 1 7 pi 3.1 68.4 2 8 ET32 2 1 q 22.3 66.4 2 9 INTILI 7 q 21 64.0 2 9 FCE 4 q 25 55.6 8 1 TSH 3 1 1 2 pi 3 68.6 2 9 FT 1 3 q 34 70.5 3 1 LDHB 1 2 pi 2.2 pi 2.1 42.7 3 1 FCT 1 3 q 1 2 46.0 8 2 UVC 1 6 q 22.1 55.0 3 1 GGT 2 2 q 1 1.1 q 11.2 3 2 LPH 8 p 22 54.8 3 2 RHB 1 0 pi 1.2 29.2 3 3 FCS 1 4 q 24.3 71.4 8 4 4 4 4 4 4 4 4 4	2.5 HGF		38.6				41.5			53.4	25 DIA1		79.6			
2 7] 2 6 liGF1		53.3	26	F11		48.8	77 TGFA		71.4	2 8 EVO1	1036	65.5	ł		
2 8 IGKV	27 IGKC*		49.5	27	FARPI-		69.7	7 BITGFB3	14024		27 EAG*	21022.3	65.6	l		
3 LAMB2 1q31 24.7 20 CEB 24.5 55.6 8 ISMB 1913 43.1 30 F10* 13q34 83.9 3 LAMB2 12p12.2*p12.1 42.7 31 FLT 13q12 46.0 39.2 31 LAMB2 12p12.2*p12.1 32.2 BHB 10p11.2 39.2 39.9 10p11.2 55.0 31 LAMB2 12q13 59.2 3 KRAS2* 12p12.1 32.2 33 FOS* 14q24.3 71.4 84 a) Xp11.23 65.8 32 LAMBA* 15p13.1 91.5 3 MIC2 Xp22.92;Yp11.3 52.1 38 CAA 17q23 84.7 3 MIC2 Xp22.92 39 CAT Xp21 Xp13 Xp11.22 52.0 24 MRAS 11p15.5 65.5 3 MIC2 Xp22.92 39 CAT Xp13 Xp11.2 Xp13 Xp11.2 3 MIC2 Xp22.92 39 CAT Xp13 Xp11.2 3 MIC2 Xp22.92 39 CAT Xp13 Xp11.2 3 MIC2 Xp22.92 39 CAT Xp13 Xp11.2 3 MIC2 Xp22.92 30 CAT Xp13 Xp11.2 3 MIC2	28 IGKV		64.1				56.0	78 TP53*		62.4			66.4	Î		
3	29 INT1L1	7031	64.6	29	FGF5	4021	79.5	86 TPI1	12013	65.6	29 F7*	13q34	70.5			
3 1 LDHB	3 OILAMB2		54.7	۵۵!	FGFB*		55.6	l a 1 TSH9		43,1	130 F10*	13934	83.9	i		
22 P.P. 8,922								8 2 UVO*		55.0	3 1 GGT1		61,9	i		
3 3 KRAS2* 12p12.1 32.2 32 FCS* 14g24.3 71.4 84 a) Xp11.22 65.6 23 GPF 18g13.1 91.5 34 MET 7q31 40.6 34 G6PD* Xq20 86.2 86.2 34 HSA* 16p13.2 91.5 35 MC2 Xp22.92;Yp11.3 52.1 35 GAA 17g23 84.7 70.9 36 GAT 9p13 62.2 36 HLA-A 6p21.3 39 HLA-A	32 LPL*	8p22	54.8	32	RVRB		19.2	B3 VIM*	10p13	71,1	3 2 GL!	12013	59.2	ļ		
3 4 MET 7 31 49.6 34 G8PD	33KRAS2*	12012.1	33.2	33	FOS*		71.4	[8 4(a)	Xp 11.23	65.8	i 33 iGPl		91.5	i		
3 5 MMC2														!		
3 6 M/NCN 2 294 79.9 3 8 CALT 90.13 71.4 37 M/NCA 19913.2 50.5 37 CAPD 12013 71.4 37 M/NCA 19913.2 50.5 37 CAPD 12013 71.4 32 M/NCA 19913.2 50.5 37 CAPD 12013 71.4 32 M/NCA 19913.2 50.0 39 M/NCA 19913.2 50.0 39 M/NCA 19913.3 57.9 39 M/NCA 19913.3 57.9 39 M/NCA 19913.3 57.9 39 M/NCA 19913.2 57.9 39 M/NCA 19913.2 57.9 40 M/NCT 11913.9 57.9 57.5 40 M/NCA 19913.2 57.9 57.5 41 M/NCA 19913.2 57.9 57.5 42 M/NCA 19913.2 57.9 57.0 42 M/NCA 19913.4 75.0 43 M/NCA 19913.4 75.0 45 M/NCA 19913.4 57.0 45 M/NCA 19913.3 57.0 45 M/NCA 19913.2 57.0 45 M/NCA 19913.3 57.0 M/NCA 19913.3 57																
37 NCA* 19p13.2 59.5 37 GAPO 12p13 73.4 38 ND* 143 21q22.3 48.5 38 ND* 143 49.7 39 GLUT3 12p13.3 57.9 39 ND* 143 49.7 39 GLUT3 12p13.3 57.9 40 NST* 17q13.2 39.7 41 PRB1*2**12p13.2 39.5 41 GPP 18q21 63.8 42 PRHI*2**12p13.2 39.5 41 GRP 18q21 63.8 42 PRHI*2**12p13.2 39.7 45 GRP 18q21 75.2 45 GRP 18q21	3 6 MYCN		79.9	36	GALT			i			36 HLA-A			l		
3 8 NID* 1443		19013.2	50.5	37	GAPD	12013	71.4	l				21922.3	48.5	i		
3 9 OTC Xp21.1		1g43	66.1	38	GCP*	Xq26		1								
40 PGY1-3 7021	2 9 OTC		43.7	39	GLUT3		57.9	l					94.5	1		
41 PRB 1-2-4*1 2913.2 29.5 41 GPP 16921 69.8 41 GPP 19921 69.8 42 PRH 1-2 12913.2 34.1 42 GSR* 6921.1 55.7 42 GRR* 1492.33 59.0 43 PRKCG 19919.4 75.0 43 GST2* 6912.2 55.7 42 KHE* 1492.33 67.3 44 KHE* 1492.33 67.3 45 KHE* 13914.2 39.7 45 KHE* 1492.33 67.3 45 KHE* 13914.2 39.7 45 KHE* 1492.33 67.3 45 KHE* 1492.33 67.0 48 KHE*	4 0 PGY1+3	7g21	44.0					1			40 HSTF*		93.7	i		
42 PRH1-2 12p10.2 34.1 4.2 CSR* 8p21.1 55.7 42 CHIA1-2* 14q12.33 59.0 43 PRKCG	41 PRB1-2+							Ī			41 IGF2"	11p15.5	73.2	ł		
43 PRICCS 1913.4 75.0 43 OST2* 9012.2 55.7 44 RAP1 12014 28.8 44 RAP1 12014 28.8 144 RAP1 12014 4 RAP1 12014 28.8 144 RAP1 12014 27.3.1 44 RAP1 12014 27.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 5	4 2 PRH1+2							i						l		
44 12914 28.8 44 14F2 1921 73.1 44 12RB 22913 75.2 45 R31* 13914.2 33.7 45 1838 5013 61.5 61.5 61.5 46 185* 1915.5 70.0 47 185* 3928 68.4 47 148* 1692.1 49.9 48 1871 12913 63.5 47 185* 3928 68.4 47 148* 148* 1892.1 49.5 48 1871 13913.3 68.6 48 1871 13913.3 68.6 49 1878 7935 7935 7935 7935 7935 7935 7935 49 1878 7935 7935 7935 7935 7935 7935 7935 49 1878 7935 7935 7935 7935 7935 7935 7935 7935 7935 49 1878 1941 7935 7935 7935 7935 7935 7935 7935 7935 49 1878 1941 7935 7935 7935 7935 7935 7935 7935 7935 7935 7935 49 1878 1941 7935 7935 7935 7935 7935 7935 7935 7935 49 1878 1941 7935 793								1			49 KHE"		67.3	Į.		
45 R31° 13q14.2 33.7 45 MSG 5q13 61.5 65 65 65 1915.5 70.0 46 QCPR 4915.3 54.1 46 HP° 16q22.1 49.9 68 INT1 12q13 63.5 47 SST 3q26 66.4 47 HPN° 16q22.1 45.5 47 KLX1 16q13.3 66.6 46 STS X422.32 61.3 46 HPRT Xq36 39.7 46 IAABA 12q13 60.2 49 TCRB° 7q35 57.0 49 HSB3 1913.1 64.1 49 LHB 19q13.3 62.4 50 TCRB° 1q41 55.9 60 IFNB1 9p22 59.7 50 IFNB1 19q13.3 65.4								1						l		
4 8 COOPH 4pis.2 84.1 48 HP 16q22.1 49.9 48 INT 12q13 83.5 47 ST 3q26 68.4 47 HPH 16q22.1 45.5 47 KUX 19q13.3 68.8 48 ST Xμ22.92 61.3 48 HPRT Xq36 39.7 48 LALBA 12q13 60.2 49 TCRB 7q35 57.0 49 HSDB 1p19.1 64.1 49 LHB 19q13.3 82.4 80 LTRB 19q13.1 80 LTRB								ĺ						l		
47 SST 3928 68.4 47 MPH* 18022.1 45.5 47 KDX1 18013.3 68.8 48 STS Xy22.92 81.3 48 MPRT Xq26 39.7 48 LALBA 12019 60.2 49 TCRB* 7935 57.0 49 MSDB3 1p13.1 64.1 49 LMB 19013.3 82.4 50 TGRB2* 1941 55.9 60 (FMB) 9p22 59.7 50 (FMB) 19013.3 85.4	4 8 QQPR							i						1		
4 8 ST9 XV2.32 81.3 88 HPRT XQ18 99.7 48 [LALBA 12Q13 60.2 49 HSDB 1p13.1 84.1 49 [LB 19q13.3 82.4 50] TGBB* 7Q35 1913.1 84.1 49 [LB 19q13.3 82.4 50] TGBB* 1q141 55.9 60 [FNB] 9p2 50.7 50 [FNB] 9p2 50.7	4 7 SST							l .						1		
49 TCRB 7435 57.0 49 HSDB3 1p13.1 64.1 49 LHB 19413.3 62.4 50 TGFB2 1441 55.9 60 IFNB1 9p22 50.7 50.7 50 LNG 19413.1 65.4	4 8 STS							i						ł		
\$0 TGFB2* 1941 55.9 \$0 IFNB1 9922 50.7								l .						1		
								1						1		
								1						}		

^{*}Genes were localized at high resolution.

for third codon position of coding sequences localized in G-, R- or T-bands were 58, 61 and 73% GC, respectively, the standard deviations being 17, 12 and 12% GC, respectively. While the difference between GC levels of T-band and G- or R-band coding sequences is a large one (12-15% GC), that between coding sequences localized on G- or R-bands is small (3% GC). The possibility of misassignments of genes should, however, be considered. For example, the assignment of APOE to band q13.2 of chromosome 19 is arguable; an alternative possibility would be a localization on the nearest R-band, which is, in fact, a T-band. In such a case, the average GC level of coding sequences localized in Gbands would be 56% instead of 58%. This point is mentioned simply to show how sensitive the mean value is to the removal of even a single (admittedly extreme) gene from such a small sample.

The low resolution approach has the advantage that it can be applied to a larger sample (200 coding sequences in the present case), and the obvious disadvantage of a lower resolution. In this case, mean GC levels for third codon position of genes localized in G-, R- and T-bands were found to be 54, 60 and 72%, respectively, the standard deviations being 16, 14 and 13% GC, respectively. Again, the major difference (12-18% GC) concerns coding sequences which are located in Tbands, whereas that between sequences located in Gand R-bands is definitely much smaller (6% GC). A similar analysis has been published by Ikemura and Wada [20] using a coding sequence sample similar to that used here. In the present work, we have classified genes according to whether they are located in G-, R-(both intercalary and telomeric, but T-negative) and T-bands (both intercalary and telomeric, following Dutrillaux [11] and Ambros and Sumner [12]). In contrast, Ikemura and Wada [20] have used a more complex classification concerning genes located in R-bands, Gbands, telomeric bands (whether T-positive or T-negative), T-type R-bands and intercalary R-bands. There is, therefore, no coincidence between the three classes studied here and the 6 classes investigated by Ikemura and Wada [20] except for G-bands. Another difference concerning the two sets of results concerns the fact that we have considered gene localization not only at low resolution but also at high resolution. The conclusions are, however, largely in agreement.

3.2. Hybridization of telomeric probes on fractionated human DNA

A set of telomeric probes have been hybridized on human DNA compositional fractions to learn about the base composition of telomeres corresponding to either T-positive or T-negative bands. Fig. 2 shows the CsCl profiles of the DNA fractions used.

When the probe pHuR93, containing the terminal repeat common to all the chromosomes [15], was hybridized (Fig. 3A), the signals were found on fractions

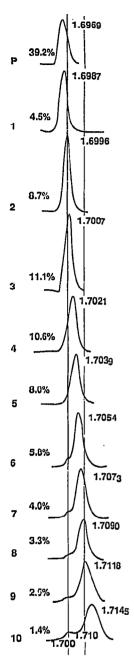


Fig. 2. Analytical CsCl profiles of human DNA fractions. Fractionation was obtained by preparative ultracentrifugation in Cs₂SO₄/BAMD [21,22] at a ligand/nucleotide molar ratio Rf = 0.14. Modal buoyant densities and relative DNA amounts are indicated. P stands for pellet.

4-10 corresponding to GC levels ranging from 42.9-55.6%, the latter fraction showing the highest hybridization intensity; 63% of the human genome, corresponding to isochore families L1 and L2, did not show any hybridization.

In order to study the base composition of individual telomeres, different probes specific for a single chromosome or for a group of them were used. The results

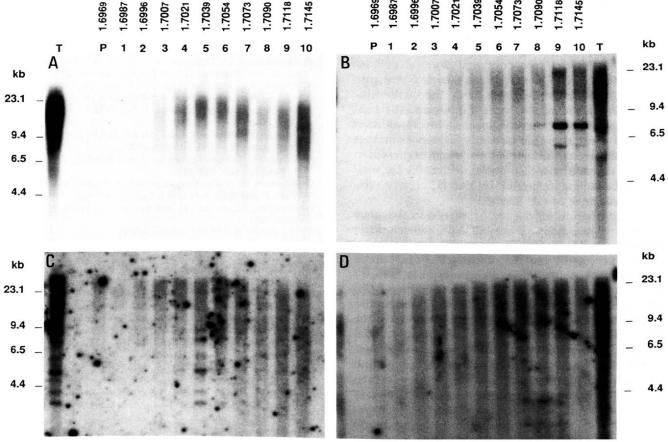


Fig. 3. (A) Hybridization of probe pHuR93, containing a DNA sequence homologous to the human telomeric repeat [15], on equal amounts (1 µg) of human DNA fractions digested with Hpal1. (B) Hybridization of probe pTH24, a GC-rich minisatellite located on telomeres of chromosomes 7, 16, 17 and 21, on EcoR1-digested human DNA fractions. (C) Hybridization of probe G2-1H, specific for the telomere 4q, on human DNA fractions digested with Hpal1. (D) Hybridization of probe Scos146-3, specific for the telomere 7q on human DNA fractions digested with EcoR1.

In all panels P stands for pellet.

obtained showed different GC levels in telomeres corresponding to either T-positive or T-negative bands. Indeed, while the former generally consist of very GC-rich sequences corresponding to the isochores of the H3 family, the latter consist of DNA fragments having a lower GC-content (H1 or H2 isochores).

An example of a probe homologous to sequences located in a T-positive telomere is given in Fig. 3B. pTH2\(\Delta\) [18] is a GC-rich minisatellite (80% GC) proximal to the terminal repeat (TTAGGG)n, localized in the teromeres of several chromosomes, such as chromosomes 7, 16, 17 and 21, all comprising at least one T-band, but not of chromosome 3 which has no telomeric T-bands. As expected, this probe hybridized with fractions 9 and 10, which correspond to 52.9% and 55.6% of GC, respectively. Exactly the same pattern was obtained with pTH14\(\Delta\) (data not shown), which probably is a rearranged clone derived from the same human sequence [18].

On the contrary, when T-negative telomeres were investigated in their GC levels, lower levels were found.

Fig. 3C and D shows two examples: (i) probe G2-1H, specific for 4q35 [16], is clearly located in fraction 5 (44.8% of GC); and (ii) Scos146-3, a cosmid clone specific for 7q36 [17] was localized on several fractions with a hybridization on fractions 3-5 (41.5-44.8% GC). Both bands 40ter and 7q36 are T-negative.

It should be stressed that the hybridization results presented here inform us about the GC levels of DNA segments as large as the size of DNA fragments used, i.e. 50-100 kb.

4. DISCUSSION

The analysis of the third codon positions of coding sequences localized at either low or high resolution on chromosomal bands definitely indicates much higher average GC values for the genes located in T-bands than for those located in either R- or G-bands; the difference among the latter seems to exist, but is much smaller. Since third codon positions above 72% GC correspond to genes located in the H3 family of iso-

chores [2], this finding indicates that this family corresponds to T-bands. Needless to say, this conclusion is of interest if one considers that the H3 family of isochores not only has the highest concentration in genes, but also the highest transcriptional and recombinational activity, as well as a distinct chromatin structure (see Introduction). On the other hand, the smaller differences between sequences located in G- and R-bands may be due to the fact that the latter (at low resolution) comprise a number of thin G-bands; sequences present in such bands would be counted as sequences present in R-bands (as seen at low resolution). Moreover GC-rich isochores belonging to families H1 and H2 cover a relatively broad range of GC levels.

The hybridization results are of interest in that they show that (i) telomeres, as tested with the telomeric tandem repeat [15], practically correspond to isochores H1, H2, H3; (ii) the GC-rich minisatellites present in telomeric T-bands, like those of chromosomes 7, 16, 17 and 21, are located in the two GC-richest fractions; (iii) probes specific for telomeric R-bands (4q, 7q) hybridize on fractions corresponding to GC-rich isochores of the families H1 and H2. There is, therefore, a substantial difference between the four T-bands and the four non-T-bands (4q, 7q and those of chromosome 3) explored.

In conclusion, the present results strongly support the idea that the H3 family of isochores is located in T-bands. Direct evidence on this point has just been obtained from in situ hybridization of biotin-labelled DNA fragments derived from the H3 isochore family (S. Saccone, A. De Sario, G. Della Valle and G. Bernardi, paper in preparation).

Acknowledgements: This work was supported by the French Ministry for Research and Technology (MRT), the Association Française contre les Myopathies (AFM) and Association pour la Recherche sur le Cancer (ARC). We thank Titia de Lange, Harold Riethman and Bernhard Weber for kindly providing us with telomeric probes.

REFERENCES

- [1] Bernardi, G., Olofsson, B., Filipski, J., Zerial, M., Salinas, J., Cuny, G., Meunier-Rotival, M. and Rodier, F. (1985) Science 228, 953-960.
- [2] Mouchiroud, D., D'Onofrio, G., Aïssani, B., Macaya, G., Gautier, C. and Bernardi, G. (1991) Gene 100, 181-187.
- [3] Aïssani, B. and Bernardi, G. (1991) Gene 106, 185-195.
- [4] Aïssani, B. and Bernardi, G. (1991) Gene 106, 173-183.
- [5] Rynditch, A., Kadi, F., Geryk, J., Svoboda, J. and Bernardi, G. (1991) Gene 106, 165-172.
- [6] Soriano, P., Meunier-Rotival, M. and Bernardi, G. (1983) Proc. Natl. Acad. Sci. USA 80, 1816-1820.
- [7] Zerial, M., Salinas, J., Filipski, J. and Bernardi, G. (1986) Eur. J. Biochem. 160, 479-485.
- [8] Bernardi, G. (1989) Annu. Rev. Genet. 23, 637-661.
- [9] Tazi, J. and Bird, A.P. (1990) Cell 60, 909-920.
- [10] Gardiner, K., Aïssani, B. and Bernardi, G. (1990) EMBO J. 9, 1853-1858.
- [11] Dutrillaux, B. (1973) Chromosoma 41, 395-402.
- [12] Ambros, P.F. and Sumner, A.T. (1987) Cytogenet. Cell Genet. 44, 223-228.
- [13] Human Gene Mapping 10 (1989) Cytogenet. Cell Genet. 51, 1-1148.
- [14] Thiery, J.P., Macaya, G. and Bernardi, G. (1976) J. Mol. Biol. 108, 219-235.
- [15] Moyzis, R.K., Buckingham, J.M., Scott Cram, L., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L. and Wu, J.R. (1988) Proc. Natl. Acad. Sci. USA 85, 6622-6626.
- [16] Weber, B., Collins, C., Robbins, C., Magenis, R.L., Delaney, A.D., Gray, W.J. and Hayden, M.R. (1990) Nucleic Acids Res. 11, 3353-3361.
- [17] Riethman, H.C., Moyzis, R.K., Meyne, J., Burke, D.T. and Olson, M.V. (1989) Proc. Natl. Acad. Sci. USA 86, 6240-6244.
- [18] de Lange, T., Shiue, L., Myers, R.M., Cox, D.R., Naylor, S.L., Killery, A.M. and Varmus, H.E. (1990) Mol. Cell. Biol. 10, 518– 527.
- [19] Sealey, P.G., Whittaker, P.A. and Southern, E.M. (1985) Nucleic Acids Res. 13, 1915-1922.
- [20] Ikemura, T. and Wada, K. (1991) Nucleic Acids Res. 19, 4333–4339.
- [21] Bünemann, M. and Dattagupta, N. (1973) Biochim. Biophys. Acta 331, 341-348.
- [22] Cortadas, J., Macaya, G. and Bernardi, G. (1977) Eur. J. Biochem. 76, 13-19.